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Asymptotic solutions of non-classical boundary-value problems
of the natural vibrations of orthotropic shells�
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Abstract

The natural vibrations of orthotropic shells are considered in a three-dimensional formulation for different versions of the boundary
conditions on the faces: rigid clamping rigid clamping, rigid clamping free surface, and mixed conditions. Asymptotic solutions
of the corresponding dynamic equations of the three-dimensional problem of the theory of elasticity are obtained. The principal
values of the frequencies of natural vibrations are determined. It is shown that three types of natural vibrations occur in the shell:
two shear vibrations and a longitudinal vibration, which are due solely to the boundary conditions on the faces. It is proved that each
boundary layer has its own natural frequency. The boundary-layer functions are determined and the rates at which they decrease
with distance from the faces inside the shell are established.
© 2006 Elsevier Ltd. All rights reserved.

A number of publications1–4 are devoted to the asymptotic method of solving the classical static boundary-value
problem for plates and shells (appropriate components of the stress tensor are specified on the faces). The classical
problem of the natural and forced vibrations of shells are considered by the same method in Refs. 5–8. Another branch
of the asymptotic method was developed and an asymptotic theory of anisotropic plates and shells was constructed in
Ref. 9. The method turned out to be particularly effective for solving non-classical boundary-value problems of thin
bodies (values of the displacement vector or mixed conditions were specified on the faces). A characteristic feature
of these problems is the fact that, when solving them, the hypotheses and assumptions of the classical theory are
inapplicable. An essentially new asymptotic representation was established for the components of the stress tensor
and the displacement vector which enables a solution of the corresponding three-dimensional problem of the theory of
elasticity to be obtained with an asymptotic accuracy specified in advance.10–14 Some non-classical problems of the
natural and forced vibrations of thin bodies have also been solved in Refs. 15–19; a review of research in this area can
be found in Ref. 20.

1. Fundamental equations and formulation of the boundary-value problems

Consider the natural vibrations of an orthotropic shell of thickness 2h: � = {�, �, �; �, � ∈ �0, −h ≤ � ≤ h}, where
�0 is the middle surface, � and � are the lines of curvature of the middle surface of the shell, and � is a rectilinear axis,
directed perpendicular to the middle surface. It is required to obtain the non-zero solutions of the dynamic equations
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of the theory of elasticity in the chosen triorthogonal system of coordinates for a series of boundary conditions on the
faces � = ±h. To simplify the calculations we will use the components of the asymmetric stress tensor �ij.1,9,21

We have the following equations of motion

(1.1)

and the following equations of state (the elasticity relations)

(1.2)

where k� and k� are the geodesic curvatures, A and B are coefficients of the first quadratic form, R1 and R2 are the
principal radii of curvature of the middle surface, � is the density and aij are the constants of elasticity (aij = aji).

One of the following groups of conditions is specified on the faces � = h

(1.3)

or

(1.4)

while one of the following groups of conditions is specified on the surface � = −h

(1.5)

or

(1.6)

The conditions on the side surface will not be specified for the time being. They affective the values of the amplitudes
of the vibrations in the boundary layer.

2. Solution of the internal problem

We will change in Eqs. (1.1) and (1.2) to dimensionless coordinates and displacements in accordance with the
formulae
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where R is a characteristic dimension of the shell (the least of the radii of curvature and of the linear dimensions of the
middle surface), and � = h/R is a small parameter. The solution of the transformed equations will be sought in the form

(2.1)

where Q�� is any of the values of the stresses and displacements and � is the frequency of natural vibrations. As a
result we obtain a system in Qjk, singularly perturbed by the small parameter �

(2.2)

The solution of system (2.2) is the sum of the solutions of the internal problem and of the boundary layer.1,9 The
solution of the internal problem will be sought in the form of the asymptotic representation9,17

(2.3)

Here and henceforth s = 0, N denotes that summation in the limits 0, N is carried out with respect to the dummy
(repeated) index s.

It follows from the asymptotic form (2.3) that, unlike the classical theory,1,9 for this class of problems all the
components of the stress tensor are asymptotically equally justified, the displacements are also equally justified (are
of the same order), and the assumptions of the classical theory of plates and shells are inapplicable here.
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Substituting expressions (2.3) into system (2.2) and applying Cauchy’s rule of the multiplication of series, to
determine the unknown expansion coefficients Q

(s)
jk we obtain the consistent system

(2.4)

We note that a consistent system for Q
(s)
jk can only be obtained for the asymptotic form (2.3).

System (2.4) can be written in the form

(2.5)
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where

(2.6)

Using relations (2.5), the components of the stress tensor can be expressed in terms of u(s), v(s), w(s).

(2.7)

where

(2.8)



L.A. Agalovyan, L.G. Gulgazaryan / Journal of Applied Mathematics and Mechanics 70 (2006) 102–115 107

while to determine the components of the displacement vector we obtain the equations

(2.9)

When s = 0 system (2.9) is converted into a system of three independent equations

(2.10)

the solutions of which have the form

(2.11)

By substituting expressions (2.11) into relations (2.7) and satisfying boundary conditions (1.3) and (1.5), we obtain
three independent homogeneous algebraic systems in the unknowns C

(0)
i . From the condition for non-zero solutions

of these systems to exist we obtain the following frequency equations and the frequency values corresponding to them

(2.12)

Solution (2.11), taking relations (2.12) into account, can be written in the form

(2.13)

The coefficients C
(0)
in (�, 	) are found from the initial conditions by a generally known method. It is easy to show that

the functions {
n(�)} comprise an orthonormalized system in the section [−1, 1]. The frequencies (2.12) are identical
with the frequencies of shear and longitudinal vibrations of orthotropic plates for similar boundary conditions (1.3)
and (1.5).17

3. The contribution of the approximations s ≥ 1

The solution when s ≥ 1 will depend on which of the values of the frequencies �u
∗0n, �v

∗0n, �w
∗0n is taken as the basis

for calculations, in particular, when solving Eq. (2.9). It is necessary to consider all three cases. When s ≥ 1, Eq. (2.9)
become inhomogeneous.

Consider the approximation s = 1. If �∗0 = �u
∗0n, from relations (2.7) and (2.10) and the boundary conditions (1.3)

and (1.5) for ���, ���, V, W we obtain the equations

(3.1)

since, after satisfying these boundary conditions the algebraic systems of homogeneous equations obtained will have
non-zero determinants in view of the fact that �∗0 = �u

∗0n is not a solution of the implicitly written Eq. (2.12).
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System (2.9) can be converted to the following system of equations

(3.2)

(3.3)

(3.4)

where

(3.5)

It follows from Eq. (3.3), relations (2.7) and boundary conditions (1.3) and (1.5) that

(3.6)

The solution of Eq. (3.4) has the form

(3.7)

where w
(1,u)
0 is a particular solution of Eq. (3.4). By satisfying boundary conditions (1.3) and (1.5) for W and ��� and

taking into account the fact that the determinant of the system obtained is non-zero, we can uniquely determine the
unknown coefficients C

(1,u)
5n and C

(1,u)
6n . Substituting the values of u(0,u)

n and w(1,u)
n into relation (2.7) we determine

�
(1,u)
33 , �

(1,u)
22 , �

(1,u)
11 , �

(1,u)
12 , �

(1,u)
21 .

The solution of Eq. (3.2) can be sought in the form of an expansion in an orthonormal system of functions,22,23 for
which we can take the eigenfunctions {
n(�)}.

We will expand the functions u(1,u)
n and F (0,u)

u in terms of these functions

(3.8)

Here and henceforth the summation sign denotes summation from m = 0 to m = ∞.
Boundary conditions (1.3) and (1.5) will be satisfied identically.
The functions {
m(�)} satisfy the equation

(3.9)

Substituting expansions (3.8) into Eq. (3.2), multiplying both sides of the equality obtained by {
k (�)}, integrating
in the limits −1 ≤ � ≤ 1 and taking Eq. (3.9) into account we obtain

(3.10)

where �mk is the Kronecker delta.



L.A. Agalovyan, L.G. Gulgazaryan / Journal of Applied Mathematics and Mechanics 70 (2006) 102–115 109

If k �= n, we can uniquely determine b1nk from relation (3.10)

(3.11)

When k = n we have

(3.12)

Hence, confining ourselves to the first two approximations, we obtain

(3.13)

In the first expansion of (3.8) the value of the coefficient b1nm remains undetermined. To find it we will use the
normalization condition22,23

whence we have the equality

and substituting into this the first expansion of (3.8), we obtain

Hence, we have

(3.14)

The cases �∗n = �v∗n and �∗n = �w∗n can be considered in the same way as the previous one.
If we confine ourselves to the approximations s = 0, 1, we will have for the frequencies �v∗n and �w∗n expressions

similar to formula (3.13) with
√

a55 replaced by
√

a44 and
√

�/�12 in it respectively.
Shear natural vibrations of the shell correspond to the frequencies �v∗n and �v∗n while longitudinal vibrations

correspond to the frequencies �w∗n. Since, by formula (2.12), the values of the frequencies for s = 0 are identical with
the corresponding frequencies for orthotropic plates, the effect of the shell, i.e. the effect of the curvature of the middle
surface, manifests itself beginning with the approximation s = 1 and is due to terms proportional to (r1 + r2). Note that,
for orthotropic plates, the effect of the last approximations on the value of the frequencies will be of the order of �2.

In a similar way we can consider the approximations s ≥ 2. However, they are hardly of any interest for applications.

4. The natural vibrations of an orthotropic cylindrical shell

We will consider the special case when the orthotropic shell is cylindrical (r1 = 0, r2 = 1, A = B = 1, k� = k� = 0). For
the zeroth approximation, relations (2.12) and solution (2.13) remain unchanged. Taking the first approximation for
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the frequencies of the natural vibrations into account, we have

(4.1)

Formulae (2.13) and the formulae

(4.2)

for the components of the displacement vector remain true, where w
(1,u)
0 is the particular solution of the corresponding

equation when s = 1.

5. Natural vibrations for other boundary conditions

Using solutions (2.7) and (2.11), by satisfying the boundary conditions (1.4) and (1.5) when s = 0, we obtain two
possible versions of the values of the frequencies of the natural vibrations

(5.1)

with eigenfunctions 1n = sin�n� and 2n = cos� (n + 1/2)� respectively.
The frequencies (2.12), corresponding to

√
a55,

√
a44, and also (5.1) corresponding to

√
�/�12 satisfy conditions

(1.4) and (1.6), while the eigenfunctions will be 1n, 2n and 3n = sin�(n/2 + 1/4)(1 − �).
The approximations s ≥ 1 are constructed in the same way. Confining ourselves to the approximations s = 0, 1, we

conclude that the following frequencies will correspond to the conditions (1.4) and (1.5)

(5.2)

(5.3)

while the frequencies

(5.4)

and the frequencies �w∗n, which are identical with (5.2) or (5.3), will correspond to the boundary conditions (1.4) and
(1.6).

Other combinations of the conditions (1.3)–(1.6) can be considered in the same way.
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6. Natural vibrations in the boundary layer

In order to investigate the natural vibrations in the boundary layer in the region of the side surface � = �0, we will
consider the dimensionless components of the displacement vector

and we will introduce new independent variables by the formulae

Carrying out the procedure for constructing the boundary layer described previously in Ref. 9, the solution of the
converted system of Eqs. (1.1), (1.2) will be sought in the form (2.1), (2.3), giving all the required quantities the
subscript b. As a result, we obtain the following system for Q

(s)
b :

(6.1)

where R
(s−1)
i� are functions that are known for each approximation if we know the values of the preceding approxima-

tions, in particular R
(k)
i� ≡ 0 when k < 0.

From system (6.1) the components of the stress tensor can be expressed in terms of u
(s)
b , v

(s)
b , w

(s)
b :

(6.2)

(6.3)

while to determine the components of the displacement vector we obtain the equations

(6.4)
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(6.5)

where

(6.6)

Eq. (6.4) and relations (6.2) describe an antiplane boundary layer while (6.3) and (6.5) describe a plane boundary
layer.

The initial approximation is of particular interest. When s = 0 the right-hand sides of Eqs. (6.4) and (6.5) vanish. It
is necessary to obtain an attenuating solution of Eq. (6.4) with the boundary conditions

(6.7)

and systems of Eq. (6.5) with the conditions

(6.8)

The solution of Eq. (6.4) with s = 0 will be sought in the form

(6.9)

The subscript a denotes that �a belongs to the antiplane boundary layer. Substituting expression (6.9) into Eq. (6.4),
we obtain a homogeneous ordinary differential equation, the general solution of which has the form

Satisfying boundary conditions (6.7), we obtain

(6.10)

By virtue of the property of the boundary layer it is necessary to confine ourselves to the values �ank with Re�ank > 0.
The eigenfunctions will be

(6.11)

The solution of system (6.5) with s = 0 will be sought in the form

(6.12)
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where L is an as yet undetermined multiplier and k is the root of the characteristic equation

where

Hence it follows that

(6.13)

Each ki has its own factor Li.
Substituting expressions (6.12) into system (6.5), we obtain

(6.14)

As a result, the solution of system (6.5) with s = 0 takes the form

(6.15)

Substituting expressions (6.15) into conditions (6.8) and taking relations (6.3) into account, we obtain a system of
homogeneous algebraic equations, for a non-trivial solution of which to exist the following equality must be satisfied

(6.16)

where

(6.17)

The summation on the left-hand side of Eq. (6.16) is carried out over a cyclic rearrangement of the indices, taking
into account alternation in the signs of the terms.

Eq. (6.16) is the characteristic equation for determining �p.
In relations (6.10) and (6.16), �*0 occurs as a parameter, and a denumerable set of �a and �p will correspond to

each of its values, defined by Eq. (2.12). Hence, for each eigenvalue there is a family of boundary functions. Hence, for
example, both �u

a and �u
p will correspond to the frequency �u

∗0n, i.e. natural vibrations of one type generate vibrations
of the other type in the boundary layer.

In the upper part of Table 1 we show the first of several values of �a for a shell of plexiglass 2:1 with the following
characteristics
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Table 1

k �∗0k = �u
∗0k

�∗0k = �v
∗0k

�∗0k = �w
∗0k

Antiplane boundary layer
0 1.995, 3.469, 4.911, 2.007, 3.476, 4.916, 0.688, 2.921, 4.540,

6.343, 7.770, 9.195 7.347, 7.773, 9.198 6.060, 7.541, 9.002
1 2.757, 4.437, 5.984, 2.838, 4.488, 6.02, 2.063, 4.939, 6.969,

7.480, 8.951, 10.407 7.510, 8.976, 10.429 8.762, 10.440, 12.052
2 3.290, 5.190, 6.862, 3.476, 5.310, 6.953 3.439, 6.637, 8.961,

8.441, 9.973, 11.475 8.515, 10.035, 11.530 10.981, 12.842, 14.603
3 3.694, 5.813, 7.613, 4.014, 6.021, 7.773, 4.814, 8.215, 10762,

9.282, 10.880, 12.436 9.414, 10.993, 12.534 12.969, 14.987, 16.883
4 4.008, 6.343, 8.272, 4.488, 6.657, 8.515, 6.1893, 9.732, 12.455,

10.033, 11.701, 13,312 10.234, 11.874, 13.464 14.819, 16.973, 18.989
5 4.252, 6.803, 8.860, 4.916, 7.237, 9.198, 7.565, 11.212, 14.079,

10.713, 12.452, 14.119 10.993, 12.694, 14.334 16.576, 18.850, 20.9

Plane boundary layer
0 0.264 + 0.243i, 0.252 + 0.231i, 0.715 + 0.657i,

0.853 + 0.602i, 0.868 + 0.596i, 2.091 + 0.589i,
1.966, 2.454, 1.963, 2.454, 2.436, 2.850,
2.953 + 0.4796i, 4.194 2.959 + 0.481i, 4.191 4.295 + 0.436i, 4.635

1 0.793 + 0.728i, 0.074, 0.756 + 0.694i, 1.689, 2.110,
1.947 + 0.688i, 2.016 + 0.644i, 2.146 + 1.971i,
2.428, 2.888, 2.432, 2.873, 3.984 + 0.758i,
4.210 + 0.503i, 4.635 4.251 + 0.473i 5.038, 5.559

2 0.409, 1.321 + 1.213i, 0.661 + 0.563i, 2.278, 3.397 + 0.325i,
2.331, 2.852, 1.260 + 1.157i 4.626, 5.434,
3.427 + 0.677i, 4.659 2.347, 2.872, 6.007 + 0.581i, 7.798

3.546 + 0.689i, 4.648
3 0.683, 1.850 + 1.699i, 0.861, 1.026 0.636, 2.460,

2.249, 2.407, 3.080, 1.764 + 1.6195i, 4.145 + 0.614i,
4.551 + 0.693i 2.276, 2.5273, 3.093 5.738 + 0.656i,

7.459 + 0.410i, 7.927
4 2.253 + 0.096i, 1.0097, 2.114, 2.633, 2.776 + 0.543i

3.619 + 0.680i, 3.7798 + 0.723i, 4.950 + 0.359i,
5.032, 5.509, 5.027, 5.537 6.485 + 0.288i,
6.057 + 0.676i, 7.330 7.922 + 0.576i

9.514 + 0.678i, 10.453

while in the lower part we show the first few values of �p for a plane boundary layer in the case of a cylindrical
orthotropic shell of the same material; the values �u

∗0k(u, v, w) are given by formula (2.12). It can be seen that the real
parts of the exponents increase in absolute value fairly rapidly, and in applied calculations one can confine oneself to
the first few roots of Eqs. (6.10) and (6.16).

Note that when s = 0 the values of �a for an antiplane boundary layer in the case of a cylindrical orthotropic shell
are identical with the values of �a for an orthotropic plate of the same material.18

It follows from the data in the table that for natural vibrations the attenuation in an antiplane boundary layer is more
rapid than in a plane boundary layer.

The approximations s ≥ 1 for a boundary layer can be constructed in a similar way, but it is not of much interest
from the applications point of view.
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